Interaction and cellular uptake of surface-modified carbon dot nanoparticles by J774.1 macrophages

نویسندگان

  • Lester Thoo
  • Mochamad Z Fahmi
  • Ihsan N Zulkipli
  • Natasha Keasberry
  • Adi Idris
چکیده

Carbon dot (Cdot) nanoparticles are an emerging class of carbon nanomaterials with a promising potential for drug delivery and bio imaging applications. Although the interaction between Cdots and non-immune cell types has been well studied, Cdot interactions with macrophages have not been investigated. Exposure of Cdot nanoparticles to J774.1 cells, a murine macrophage cell line, resulted in minimal toxicity, where notable toxicity was only seen with Cdot concentrations higher than 0.5 mg/ml. Flow cytometric analysis revealed that Cdots prepared from citric acid were internalized at significantly higher levels by macrophages compared with those prepared from bamboo leaves. Interestingly, macrophages preferentially took up phenylboronic acid (PB)-modified nanoparticles. By fluorescence microscopy, strong blue light-specific punctate Cdot fluorescence resembling Cdot structures in the cytosolic space was mostly observed in J774.1 macrophages exposed to PB-modified nanoparticles and not unmodified Cdot nanoparticles. PB binds to sialic acid residues that are overexpressed on diseased cell surfaces. Our findings demonstrate that PB-conjugated Cdots can be taken up by macrophages with low toxicity and high efficiency. These modified Cdots can be used to deliver drugs to suppress or eliminate aberrant immune cells such as macrophages associated with tumors such as tumor-associated macrophages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PLGA-based macrophage-mediated drug targeting for the treatment of visceral leishmaniasis

The potential of PLGA-nanoparticles as a carrier of amphotericin B and doxorubicin against visceral leishmaniasis was evaluated by macrophage-mediated drug targeting approach. PLGA-nanoparticles were modified by coating them with macrophage-specific ligand-lectin. Prior to in-vitro studies, characterization studies were carried out systematically include particle size, surface morphology, perce...

متن کامل

The Cytotoxicity of Silver Nanoparticles Coated with Different Proteins on Balb/c Macrophage Cells

Background and Aims: Coated nanoparticles have different surface chemistry, aggregation, and interaction properties. The aim of this study was to investigate the cytotoxicity of silver nanoparticles AgNPs coated with different proteins on Balb/c macrophages. Materials and Methods: In this study these items were evaluated: 1) the size of aggregation, 2) the quantity and mechanisms of uptake, ...

متن کامل

Platinum Nanoparticles Deposited on Oxygen-Containing Functional Groups at Carbon Vulcane XC-72 as a Cathode Catalyst for Direct Methanol Fuel Cell

Surface oxidized carbon vulcane XC-72 is prepared as catalyst support and platinumnanoparticles are chemically anchored onto the modified surface. The nanoparticles of Pt weresynthesized by reduction of H2PtCl6 with sodium borohydride in a 5.5 M buffer solution ofsodium citrate; the complexation of citrate with metal ions is beneficial to the formation ofnanoparticles. The electro-oxidation of ...

متن کامل

Application of copper oxide nanoparticles modified glassy carbon electrode for electrocatalytic oxidation of methanol

Copper nanoparticles were fabricated by electro-reduction of CuSO4solution in the presence of cetyltrimethylammonium bromide (CTAB) cationic surfactant as an additive through potentiostatic method. The prepared copper nanoparticles were characterized by scanning electron microscopy (SEM) and electrochemical methods. The SEM images reveal that the nanoparticles with diameters at about 70 n...

متن کامل

On-demand cellular uptake of cysteine conjugated gadolinium based mesoporous silica nanoparticle with breast cancer-cells

Design, synthesis, and conjugation of mesoporous silica nanoparticles (MSNs) with biomolecules is a matter of growing interest to enhance selective uptake of contrast agents like gadolinium (Gd3+) by cancer cells. Here, by targeting xc-cystine/glutamate antiporter system in breast cancer cells, conjugation of MSN-Gd3+ with cysteine is used to enhance cancer cellular uptake of Gd3+. Reactions de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2017